Rivera, J.-P., Speziali, N. L., Berger, H., Arend, H. \& Schmid, H. (1990). Ferroelectrics, 105, 183-188.

Sawada, S., Yamaguchi, T. \& Suzuki, H. (1985). Ferroelectrics, 63, 3) 11.
Simmons, E. H. \& Heine, V. (1987). Acta Cryst. A43, 626-635.
Speziali, N. L. (1989). Phase Transitions in $\mathrm{Cs}_{2} \mathrm{CdBr}_{4}$ and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{HSO}_{4}$: a Crystallographic Study of Normal and Modulated Phases. PhD Thesis, Univ. of Lausanne, Switzerland.

Stewart, J. M., Kundell, F. A. \& Baldwin, J. C. (1972). The XRAY72 system. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA. Modified by D. Schwarzenbach.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Wolff, P. M. de, Janssen, T. \& Janner, A. (1981). Acta Cryst. A37, 625-636.
Yamamoto, A. (1982). Acta Cryst. A38, 87-92.

Determination of the Structure of Papaya Protease Omega

By Richard W. PickersGill*
Protein Engineering Department, AFRC Institute of Food Research, Reading Laboratory, Shinfield, Reading, Berkshire RG2 9AT, England
Pierre Rizkallah
SERC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England
and Gillian W. Harris and Peter W. Goodenough
Protein Engineering Department, AFRC Institute of Food Research, Reading Laboratory, Shinfield, Reading, Berkshire RG2 9AT, England

(Received 13 September 1990; accepted 11 March 1991)

Abstract

The structure of papaya protease omega ($\mathrm{pp} \Omega$) has been determined using Enraf-Nonius FAST TV data collected using the Daresbury Synchrotron Radiation Source (SRS). This is the first protein structure to be determined using the FAST/SRS combination and the first protein structure to be solved in space group $P 3,12$. The structure has been refined to a crystallographic R factor of 0.1549 for all data in the range $10 \cdot 0-1.8 \AA$.

1. Introduction

Papaya protease omega $(\mathrm{pp} \Omega)$ is a cysteine protease from the latex of Carica papaya. pp Ω is homologous to papain (69% sequence identity; Dubois, Kleinschnidt, Schnek, Looze \& Braunstzen, 1988) and the level of homology suggests that the structures of papain and $\mathrm{pp} \Omega$ are similar and that the structure of $\mathrm{pp} \Omega$ may therefore be solved by molecular replacement. The structure of papain was determined by multiple-isomorphous replacement and refined by Drenth and colleagues (Kamphuis, Kalk, Swarte \& Drenth, 1984). A monoclinic ($P 2_{1}$) crystal form has been solved by molecular replacement recently

[^0]0108-7681/91/050766-06\$03.00
(Pickersgill, Harris \& Garman, 1991) and refined to $R=0.1596$ using 10.0 to $1.60 \AA$ data. This structure was used as the search model in molecular replacement.

The activity of $\operatorname{pp} \Omega$ is similar to that of papain although subtle differences in specificity and stability have been reported.
$\operatorname{pp} \Omega$ crystals diffract only weakly using a sealedtube source and to a resolution limit of about $2.6 \AA$ using X-rays from a rotating-anode source. At the Daresbury synchrotron radiation source (SRS) these crystals diffracted to $1.8 \AA$. This paper reports data collection, reduction and the use of these data to solve and refine the structure of $\mathrm{pp} \Omega$.

2. Experimental procedures

2.1. Crystals and $S R S / F A S T$ data collection and reduction

Protease Ω was eluted from a carboxymethylSepharose column and dialysed against 100 mM sodium acetate at pH 5.0 containing 2.0 mM mercuric chloride (Pickersgill, Sumner \& Goodenough, 1990). The mercuric chloride prevented autolysis of the protein. Before crystallization the protein was dialysed against 50 mM Tris buffer at pH 8.0 containing 250 mM sodium chloride to remove any (c) 1991 International Union of Crystallography

Table 1. SRS/FAST data collected

	Dectector	ω	SRS ${ }^{+}$	Ion	Exposure
Data	$2 \theta^{*}$ ()	()	(mA)	chamber	frame (s)
Main region	-15.0	0.0.181.0	287	0.26	$10 \cdot 0$
Blind region+	15.0	0.031 .0	177	0.20	13.0
Low resolution ${ }_{+}$	$0 \cdot 0$	0.041 .0	163	0.17	10.0

* Crystal detector distance set to $100 \cdot 0 \mathrm{~mm}$.

SRS at 2 GeV ; multibunch mode.

+ It was not necessary to translate the crystal along the needle axis for the blind-region and low-resolution collections.
unbound mercury. Crystals of $\mathrm{pp} \Omega$ were grown by vapour diffusion of $200 \mu \mathrm{l}$ of a 1.8% protein solution in 50 mM Tris buffer at pH 8.0 containing $250 \mathrm{~m} M$ sodium chloride against a reservoir of ethanol and water. The reservoir contained 82% ethanol and $182 \mathrm{~m} M$ sodium chloride in water. These needleshaped crystals were trigonal, space group $P 3_{1} 12$ (or $P 33_{2} 12$) with $a=74.2$ (2), $c=77.9$ (2) \AA and with one molecule in the asymmetric unit (Pickersgill, Sumner \& Goodenough, 1990).

Data were collected from a single $\mathrm{pp} \Omega$ crystal of size $0.8 \times 0.2 \times 0.2 \mathrm{~mm}$ using the Enraf-Nonius FAST TV detector on station 9.6 of the SERC Daresbury Synchrotron. The crystal was mounted with the needle c axis parallel to the capillary and spindle axes. The crystal-to-detector distance was set to 100.0 mm and the detector swung out to a 2θ angle of -150 , giving a maximum resolution of about $1.8 \AA$. Data were collected by oscillating the crystal about ω and a $0 \cdot 1$ oscillation range was collected per frame. With a 0.2 mm diameter collimator, the SRS source operating in multibunch mode at 2 GeV and 287 mA and with the wiggler magnet at 5 T and the wavelength at $0.904 \AA$ diffraction could be recorded to the diffraction limit of the crystal using an exposure of 10 s per frame.

Data were collected in three batches: (1) $1.8 \AA$ main data consisting of 181.0 of data, (2) $1.8 \AA$ blind-region data with κ moved through 90.0 consisting of $31 \cdot 0$ of data and (3) low-resolution data, with the detector swing angle set to $0 \cdot 0^{\prime}$ (Table 1).

These data were processed using the MADNES software (Messerschmidt \& Pflugrath, 1987) with modifications for the characteristics of the SRS source (Papiz \& Andrews, 1987) and using the profile-fitting and correction options from the program XDS (Kabsch, 1988). These data were scaled and merged using AGROVATA/ROTAVATA (CCP4 program suite, Daresbury, England).

2.2. Molecular replacement

The structure of $P 2_{1}$ papain (Pickersgill, Harris \& Garman, 1991) was used as a search model in rotation-function calculations. The program MERLOT (Fitzgerald, 1988) was used for rotationfunction calculations. The search model was centred
in a cubic cell of side $80.0 \AA$, such that no intramolecular vectors shorter than $24 \cdot 0 \AA$ occurred, because this was the radius of integration used in the rotation function. Structure factors were calculated for the papain structure in the $P 1$ cell using a temperature factor of $15 \AA^{2}$. These calculated structure factors and the observed structure-factor amplitudes (10.0 to $4.0 \AA$) for $\mathrm{pp} \Omega$ were used in the Crowther fast rotation function (Crowther, 1972). The solution was refined to within $\pm 1^{1}$ using the Lattman rotation function (Lattman \& Love, 1970).

The search model was rotated according to the refined molecular-replacement solution and used in the Crowther-Blow translation function (Crowther \& Blow, 1967) and in R-value search calculations.

3. Results and discussion

3.1. SRS/FAST data

Data were collected to a much higher resolution limit than expected. On a rotating anode the resolution limit was about $2.6 \AA$ but with SRS radiation this was increased to $1.8 \AA$. The increased resolution achieved is due to the combination of the high intensity and hence short data-collection time, low wavelength and hence low absorption and low radiation damage, and high-quality parallel-beam geometry from the synchrotron source. The X-ray wavelength was known to be 0.904 (1) \AA as a result of refining the wavelength using a crystal of known cell dimensions. Refinement of the cell dimensions of $\mathrm{pp} \Omega$, crystal orientation and detector parameters gave $a=74 \cdot 11$ (5), $c=77.81$ (2) \AA, detector distance 98.497 (15) mm and swing angle -15.053 (1). The cell dimensions are in good agreement with the $\mathrm{Cu} K \alpha$ measurements and the detector parameters with those set. Examination of the symmetry of the data revealed the point group to be 312 and not the more frequently observed 321 . The data (Bijvoets not merged) consisting of a total of 200612 reflections were scaled and merged in point group 312 using agrovata/ROTAVATA which gave a merging $R_{\text {sym }}$, on intensity, of $11 \cdot 1 \%$ for 18372 unique reflections to $1.8 \AA$ (Table 2).

3.2. Molecular replacement

The sequences of papain and $\mathrm{pp} \Omega$ are homologous (about 69% identity). Compared to papain, $\mathrm{pp} \Omega$ has one insertion of four residues (at position 168) and 64 substitutions. The basic fold of these proteins is expected to be similar and molecular replacement was the method chosen to solve the structure of $\mathrm{pp} \Omega$. Structure-factor amplitudes in the range 10 to $4 \AA$ were used in the rotation function and the solution α $=46, \beta=90, \gamma=35^{\circ}$ was 6.93σ above background. This solution was refined to $\alpha=45(1), \beta=88(1), \gamma$

Table 2. Internal agreement of data and percentage of data recorded as a function of resolution

Resolution range (\AA)	$R_{s y m} *$	$R_{\text {sym }}$ (cumulative)	$\%$ complete	$\%$ complete (cumulative)
8.03	11.7	11.7	100	100
$8.03-5.68$	9.6	10.4	100	100
5.684 .64	9.0	9.7	100	100
$4.64-4.02$	92	9.5	100	100
4.023 .60	9.5	9.5	100	100
$3.60-3.29$	9.6	9.5	100	100
3.29 .3 .04	9.1	9.4	98	100
3.042 .85	9.1	9.4	100	100
$2.85-2.68$	9.3	9.4	100	100
$2.68-2.55$	10.2	9.4	100	100
2.552 .43	11.2	9.6	90	99
$2.43-2.32$	12.0	9.7	80	96
2.32 .2 .23	12.5	9.8	84	95
2.232 .15	14.1	9.9	79	93
$2.15-2.08$	15.4	10.1	80	92
$2.08-2.01$	17.7	10.3	69	90
2.011 .95	20.9	10.5	69	88
1.951 .90	26.3	10.7	77	87
$1.90-1.85$	31.2	10.9	68	86
1.851 .80	33.4	11.1	50	83

 age intensity I and n sets of equivalent reflections.
$=37(1)^{\circ}$ using the Lattman rotation function. The $\mathrm{pp} \Omega$ molecule in the crystal was expected to have a single mercury bound at the active-site cysteine and a mercury atom was added to the search model with a Cys $25 \mathrm{~S} G$ to mercury distance of $2.54 \AA$. Mercury $\left(\mathrm{Hg}^{2+}\right)$ was included in MERLOT, BRUTE (Fujinaga \& Read, 1987) and XPLOR (Brünger, 1988) programs.
The Crowther-Blow translation function, in $P 3,12$ and $P 3_{2} 12$, gave a number of peaks from which it was not easy to identify the correct solution, although some could be ruled out on packing considerations. The packing of molecules was examined using PACK running on an Evans and Sutherland PS390. R-value searches using the programs BRUTE and $X P L O R$ gave a more convincing solution (shown in Fig. 1). The results of the R-value searches using $X P L O R$ with a $1.5 \AA$ grid step are given in Table 3. The R factor decreased from 0.51 to 0.47

Fig. 1. The molecular replacement solution for $\operatorname{pp} \Omega$. $P 2_{1}$ papain ($\mathrm{C} \alpha$ backbone) rotated and translated into the $P 3_{1} 12$ cell of $\mathrm{pp} \Omega$. This projection is down the 3_{1}-screw axis, note the twofold axis in the plane $(c=0)$ is at $30^{\prime \prime}$ to the a axis.

Table 3. R-value search and rigid-body refinement using XPLOR

Space group	Resolution (\AA)	Peak height	Map mean	Height σ	Solution
P3,12	52	35	26	6.9	0.86, 0.90, 0.44
P3,12*	52	38	26	9.5	0.06, 0.70, $0 \cdot 10+$
P3,12	63	31	13	103	$0.06,0.70,0.10^{+}$
P3,12+	10.4	27	10	7.3	$0.72,003,0.10$

* 42 cycles of rigid-body refinement resulted in an r.m.s. shift of $0.73 \dot{A}$ and a reduction in the R factor from 0.511 to 0.466 .
\dagger Correct solution.
$\ddagger 49$ cycles of rigid-body refinement did not reduce the R factor from 0.5 .

Table 4. Progress of the restrained least-squares refinement of $p p \Omega$

Number of cycles	Resolution (\AA)	R	Comment
10	3.0 10.0	0.2982	Rebuild I, refine overall MSDA
5	2.5-10.0	0.3222	Extend resolution
10	2.0-10.0	0.3206	Extend resolution
5	$2.010 \cdot 0$	0.2644	Rebuild 2, 74 waters
15	2.0-10.0)	0.2143	Refine isotropic MSDA's
12	2.1)-10.0	0.1620	Rebuild 3, 160 waters
34	1.9100	0.1515	Rebuild 4, 214 waters Occupancy of Hg .0 .485
40	1.8100	0.1556	After rebuild 5,150 waters Occupancy of $\mathrm{Hg}: 0.526$
36	1.8100	0.1549	After rebuild 6, 133 waters Occupancy of $\mathrm{Hg}: 0.547$

during rigid-body refinement against 5.0 to $2.0 \AA$ data. A $2 F_{o}-F_{c}$ map with F_{c}, based on this solution and calculated with data to $3.0 \AA$ resolution confirmed that the molecule had been correctly located in the unit cell. At this stage the structure was modified from that of papain to that of $\mathrm{pp} \Omega$. Substituted (64) and inserted (4) residues were built into the density present in the $2 F_{o}-F_{c}$ map (rebuild 1).

3.3. Least-squares refinement

The course of the least-squares refinement using the least-squares refinement program RESTRAIN (Driessen, Haneef, Harris, Howlin, Khan \& Moss, 1989) is summarized in Table 4. Restrain is a leastsquares refinement program minimizing a function containing terms involving structure amplitudes, phases and stereochemical or pseudo-energy restraints. The latter consist of restraints involving interatomic bonded distances, distances between two non-bonded atoms and planarity restraints. Isotropic U values were refined for all atoms, including the solvent atoms, in the later stages of the refinement. Six rounds of rebuilding and refinement reduced the R factor from 0.466 ($5.0-2.0 \AA$ data) to 0.1549 for all data in the range 10.0 to $1.8 \AA$. Each round of refinement following a rebuild involved five cycles of geometric regularization followed by cycles of structure-factor least-squares refinement. In the first round following rebuild 1 regularization was followed by least squares at $3 \cdot 0,2 \cdot 5$ and $2 \cdot 0 \AA$ using an

Table 5. Details of least-squares refinement of $p p \Omega$ at $1.8 \AA$

```
    Number of reflections
    High resolution cut-off ( }\AA\mathrm{ )
    Low resolution cut-off (A)
    Low resolution cut-off (A
    Number of protein atoms
    Number of bound atoms( }\mp@subsup{\textrm{Hg}}{}{2}\mathrm{ ) 
    Number of water molecules
    Residual, R*
    Weighted residual, w R }
    Correlation coefficient. C
    Number of positional parameters
    Number of thermal parameters
    Number of overall scaling parameters
    Number of occupancies refined (Hg}\mp@subsup{\textrm{H}}{}{+}
    Total number of parameters refined
    * R=\Sigma| Fos-G F I\Sigma| F F .
    twR=[汭( (F,i
    \ddaggerC=n\
(\G{F, )}\mp@subsup{)}{}{2}]\mp@subsup{}}{}{12}\mathrm{ , where }n\mathrm{ is the number of amplitudes used, G}\mathrm{ is the scale
applied to F}\mp@subsup{F}{1}{}\mathrm{ , and constant weight, w=0.1 < 10 3}\mathrm{ , is given to all reflections.
```

overall MDSA (mean-square-displacement amplitude or \mathbf{U} value). A $2 F_{o}-F_{c}$ map showed substantial errors in the regions of Prol03 to Thr 107 and Pro68 to Pro69; other minor errors were corrected and 74 water molecules were added. Following rebuild 2 isotropic MDSA's were refined for all atoms and further water molecules were added. Refinement of rebuild 3 using data from $10 \cdot 0$ to $2.0 \AA$ gave an R factor to $0 \cdot 1620$. At this stage a $3 F_{o}-2 F_{c}$ map was calculated to provide an even greater degree of correction in the electron density map. Pro197, Gly 101, Gly102 and Prol03 were rebuilt substantially and other relatively minor adjustments made. An example of the substantial rebuilding involved in irregular regions is shown in Fig. 2. The chirality of Thr162, Thr214 and Ile 104 was corrected and addi-

Fig. 2. Electron density map 6 contoured at $3 \cdot 5 \%$ of the peak (mercury) density with the final fit to the electron density ($R=$ 0.1549) and the rigid-body-refined model ($R=0.466$) based on the structure of $P 2_{1}$ papain shown. Note the significant changes during rebuilding and refinement.

Table 6. Details of the final structure of $p p \Omega$
(a) Crystallographic R factor as a function of resolution

Resolution (\AA)	R	No. of structure amplitudes
10.00 .3 .24	0.1461	3734
3.242 .59	0.1339	3605
2.592 .26	0.1472	3184
2.262 .06	0.1583	2829
2.06 .1 .91	0.1869	2634
1.911 .80	0.2410	2240
Total	0.1549	18226

(h) Statistical information on the geometry

	Number	R.m.s. deviation (\mathbb{A}) from ideal values
$D<2.12$	1626	0.025
$2.12<D<2.62$	2166	0.050
$D>2.62$	27	0.069
Planes		
Type 1 (peptide)	216	0.020
Type 2 (other)	65	0.011
Chiral centres*	114	0.028

*Chiral restraints were applied as distance restraints along the edges of chiral tetrahedra with $d_{1}<2 \cdot 12 \AA$.
tional water molecules added (rebuild 4). This rebuild was refined to an R value of 0.1515 using data from 10.0 to $1.9 \AA$; this refinement included the occupancy of the mercury atom bound to the activesite cysteine. The last two rebuilds involved Serl69, Gly170, Gly 171 and Ser136, and the solvent structure was critically evaluated and water molecules with high MSDA's and poor density deleted. The final model (rebuild 6, Table 5) contains 133 water molecules compared to the 214 included in rebuild 4. The crystallographic R factor as a function of resolution for the final structure is given in Table $6(a)$.* The stereochemistry of this final model is good as judged from the deviations from ideality (Table $6 b$).

The average MSDA's for main-chain atoms, sidechain atoms and all protein atoms are $0.134,0.227$ and $0.178 \AA^{2}$ respectively. Contacts within a distance of $3.2 \AA$ between protein molecules in the crystal are given in Table 7. The N Z atom of Lys 64 is $2.88 \AA$ from the mercury atom of a symmetry-related molecule and this contact may be important in determining the arrangement of molecules and hence the space group. Intermolecular contacts less than $2 \cdot 7 \AA$ tend to have higher MSDA values associated with one or both of the atoms involved, and these are the result of errors in positioning flexible parts of the structure. One exception is the O of Gly93 to NH2 of Argl 39 contact of $2.36 \AA$; both atoms have low

[^1]Table 7. Intermolecular contacts in pp Ω crystals ($<3 \cdot 2 \AA$)

Atom 1	Atom 2	$d(\mathrm{~A})$	Symmetry operation*	$U_{1}\left(\dot{A}^{2}\right)$	$L_{2}\left(A^{2}\right)$
4 (G) Asn	170 C.4 Gily	$3 \cdot 13$	4	0.434	0.549
4 CG Asn	170) (Gly	3.07	4	0.434	0.953
4 ND2 Asn	170 C. A Gly	2.50	4	0.270	0.549
$4 \mathrm{~N} D 2 \mathrm{Asn}$	170 C Csly	3.05	4	0. 270	0.953
550 Asp	$139 \mathrm{NH2} \mathrm{Arg}$	2.72	5	0. 227	0.199
58 CD Arg	139 CD Arg	2.64	5	0.957	0. 284
58 (D) Arg	139 NE Arg	2.70	5	0.957	0. 424
61 OHis	142 OFI Gln	2.88	5	0. 104	0.147
63 NCys	$142 . \mathrm{N} E 2 \mathrm{Gln}$	2.94	5	0.081	$0 \cdot 000$
64CD Lys	136 OG Ser	3.18	5	$0 \cdot 103$	0.050
64 N/ Lys	217 HG Mer	2.88	5	0.238	$0 \cdot 101$
92 OGln	143 CD2 Leu	$3 \cdot 14$	5	0.193	$0 \cdot 196$
930 (ily	139 NH2 Arg	$2 \cdot 36$	5	$0 \cdot 185$	0.199
108 OG Ser	123 ODI Asm	$3 \cdot 15$	6	0.246	0.533
1080 Ser	114 N Gln	2.96	6	$0 \cdot 131$	0.130
110 NVal	1120 Arg	2.99	6	0.075	0.134
1100 Val	112 V Arg	2.78	6	$0 \cdot 138$	$0 \cdot 014$
123 CGAsn	$2160 X T \mathrm{Asn}$	2.66	6	0.550	0.963
$1230 D 1$ Asn	216 N Asn	$3 \cdot 10$	6	0.553	0.960
123 ODI Asn	$2160 X 7$ Asn	2.63	6	0.533	0.963
123 ND2 Asn	216 OXT Asn	$2 \cdot 58$	6	0.551	0.963
168 O Lys	170 NGly	$3 \cdot 14$	4	0.302	0.448
170 N Gly	174 OH Tyr	2.84	4	0.44X	0.327

[^2]MSDA values (Table 7). Comparison of the water structure of $\mathrm{pp} \Omega$ with that of papain shows that 26 water molecules occupy similar positions (within $0.5 \AA$) in the two structures. These 26 water molecules have an MSDA of $0.175 \AA^{2}$ compared to the average for the 133 water molecules of $0.370 \AA^{2}$.

4. Concluding remarks

Data collected using the SRS/FAST combination have been used to solve and refine the structure of $\mathrm{pp} \Omega$. These data extend to much greater resolution than could be measured using a conventional rotating-anode source and were of sufficient quality to enable the structure to be refined to an R factor of $0 \cdot 1549$ (10.0 to $1.8 \AA$ data).

This work shows that $\mathrm{pp} \Omega$ has a similar structure to that of papain (Fig. 3), but with an additional four-residue insertion (similar to that in actinidin) and with other differences in main-chain conformation resulting from proline substitutions. Like papain, however, $\mathrm{pp} \Omega$ has a cis Pro at position 152. In the first of these proline substitutions, Prol02 (papain) is substituted by glycine ($\mathrm{pp} \Omega$) and the adjacent Tyrl03 (papain) by a proline ($\mathrm{pp} \Omega$). This results in a significant difference in main-chain conformation (Fig. 3). The second region is around residue 197 which is proline in $\mathrm{pp} \Omega$ and this substitution results in a substantially different main-chain conformation (Fig. 2). However, proline substitutions do not always result in a different main-chain conformation as illustrated by the substitution of proline ($\mathrm{pp} \Omega$) for Tyr69 (papain). This substitution is accepted without major rearrangement of the main
chain. The active-site Cys25, His159 and adjacent Asp179 (175 in papain) are in identical positions in $\mathrm{pp} \Omega$ and papain. The additional mercury present in $\mathrm{pp} \Omega$ does not therefore affect the conformation of the protein. This mercury was refined to an occupancy of 0.547 indicating that a mercury atom is bound to approximately half of the molecules in the crystal. This is not surprising since no precautions were taken to ensure that the reactive Cys 25 did not undergo oxidation and some degree of oxidation must have occurred in about half of the molecules, the other half binding mercury.

There are five examples of buried charge pairs (Arg192-Glu187, Arg195-Glul18, Asp6-Arg8,

Fig. 3. Superposition of $P 2_{1}$ papain and the final model of $\mathrm{pp} \Omega$ ($\mathrm{C} \alpha$ backbones). The active-site cysteine and histidine are shown and the regions of greatest difference (around 102, 169 and 197) are labelled.

Fig. 4. Plot of average main-chain MSDA as a function of residue number. Papain is shown in full line and $p p \Omega$ in broken line. Note $\mathrm{pp} \Omega$ has systematically lower MSDA values.

Asp158-Lys 137 and His81-Glu52) and a charge network involving Glu35, Arg17, Glu50 and Arg83. In addition the following buried charge groups are adequately compensated for by non-charge group interactions or are partially solvent accessible; Asp55, Glu52, Glu57, Glul35, Lys178 and Lys215. The rings of Trp181, Tyr86 and Tyr207 have unusual χ_{2} values, judged by comparison with those observed by Ponder \& Richards (1987), owing to steric hindrance of the rings. Lys64 has an unusual conformation (x_{1}) determined by its contacts with the symmetry-related molecule and Thr42 also has a somewhat unusual χ_{1} owing to hydrogen bonding. Finally, it is interesting to note that $\mathrm{pp} \Omega$ is a less-flexible molecule than papain (Fig. 4) despite a similar number of crystal contacts and this observation may be related to its higher stability than that of papain.

Program PACK was written by Dr J. Warwicker and the authors acknowledge his help in using this program.

References
Brünger, A. T. (1988). J. Mol. Biol. 203, 803-816.

Crowther, R. A. (1972). The Molecular Replacement Method, edited by M. G. Rossmann, pp. 173-178. New York: Gordon and Breach.
Crowther, R. A. \& Blow, D. M. (1967). Acta Cryst. 23, 544-548.
Driessen, H. P., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G. \& Moss, D. S. (1989). J. Appl. Cryst. 22, 510-516.
Dubois, T., Kleinschnidt, T., Schnek, A. G., Looze, Y. \& Braunstzen, G. (1988). Biol. Chem. 369, 741-754.
Fitzgerald, P. M. D. (1988). J. Appl. Cryst. 21, 273-278.
Fuilnaga, M. \& Read, R. J. (1987). J. Appl. Cryst. 20, 517-521.
Kabsch, W. (1988). J. Appl. Cryst. 21, 916-924.
Kamphuis, I., Kalk, K. H., Swarte, M. B. A. \& Drenth, J. (1984). J. Mol. Biol. 179, 233-256.

Lattman, E. E. \& Love, W. E. (1970). Acta Cryst. B26, $1854-$ 1857.

Messerschmidt, A. \& Pflugrath, J. W. (1987). J. Appl. Cryst. 20, 306 - 315.
Papiz, M. Z. \& Andrfws, S. J. (1987). Computational Aspects of Protein Crystal Data Analysis. In Proceedings of the Daresbury Study Weekend, 23-24 January, edited by J. R. Helliwell, P. A. Machin \& M. Z. Papiz. Warrington: SERC Daresbury Laboratory.
Pickersgill, R. W., Harris, G. W. \& Garman, E. (1991). Acta Cryst. In the press.
Pickersgill, R. W., Sumnier, I. G. \& Goodenoucih, P. W. (1990). Eur. J. Biochem. 190, 443-444.

Ponder, J. W. \& Richards. F. M. (1987). J. Mol. Biol. 193, 775-791.

Acta Cryst. (1991). B47, 771-775

Studies on 1,3-Diaryltriazene Analogues of Berenil: Molecules with Potential GC Base-Pair Selectivity

By Adrial R. Walton, Terence C. Jenkins and Stephen Neidle*
Cancer Research Campaign Biomolecular Structure Unit, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, England

(Received 17 July 1990; accepted 15 April 1991)

Abstract

1,3-Bis(4-acetylphenyl)triazene (II): $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}, M_{r}$ $=281 \cdot 32$, monoclinic, $P 2_{1} / c, \quad a=14.002(5), \quad b=$ 12.359 (3), $\quad c=8.457(3) \AA, \quad \beta=96.35(2), \quad V=$ $1454.5 \AA^{3}, Z=4, D_{x}=1.287 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Cu} K \alpha, \lambda=$ $1.54178 \AA, \quad \mu=0.672 \mathrm{~mm}^{-1}, \quad F(000)=592, \quad T=$ 294 K , final $R=0.089$ for 1890 unique observed reflections. 1,3-Bis 4 -[2-(dimethylamino)ethoxycarbonyl]phenyl $\}$ triazene monohydrate (III): $\mathrm{C}_{22} \mathrm{H}_{29}-$ $\mathrm{N}_{5} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, M_{r}=445 \cdot 52$, triclinic, $P \overline{1}, a=9.500(2), b$ $=11.753$ (3) , $\quad c=13.328$ (2) $\AA, \quad \alpha=62.84$ (1),$\quad \beta=$ $66 \cdot 60(2), \gamma=77 \cdot 58(2), V=1214 \cdot 1 \AA^{3}, Z=2, D_{x}=$ $1 \cdot 172 \mathrm{Mg} \mathrm{m}^{3}, \quad \mathrm{CuK} \alpha, \quad \lambda=1.54178 \AA, \quad \mu=$ $0.640 \mathrm{~mm}^{1}, \quad F(000)=476, \quad T=294 \mathrm{~K}$, final $R=$ 0.063 for 1100 unique observed reflections. Both

^[* To whom correspondence should be addressed.]

0108-7681/91/050771-05\$03.00
crystal structures have extended conformations for the 1,3-diaryltriazene groups, with a cisoid arrangement of phenyl rings. The terminal $\mathrm{N}-\mathrm{N}$ bonds of each triazene are non-equivalent, and a hydrogen atom has been located in the $\mathrm{N}=\mathrm{N}-\mathrm{NH}$ moiety. Extensive molecular-orbital (MNDO) calculations on the model core 1,3-diphenyltriazene system have confirmed that this geometry is energetically favoured, and have revealed the shape of the energy surface for rotation about the $\mathrm{N}-\mathrm{NH}$ bond in the triazene linkage.

Introduction

The recognition of specific nucleotide sequences in DNA by small molecules has recently been the subject of considerable study. Drugs such as netropsin (c) 1991 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Atomic coordinates and structure factors have been deposited with the Protein Data Bank, Brookhaven National Laboratory and are available in machine-readable form from the Protein Data Bank at Brookhaven. The data have also been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 37044 (as microfiche). Free copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

[^2]: *Symmetry operations, second atom generated by: (4) $-y+1,-x+1$. $-z+$? (5) $x+y+1, y-z+\frac{1}{3}$: (6) $x, x-y+1,-z$.

